博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
tf.nn.embedding_lookup
阅读量:6217 次
发布时间:2019-06-21

本文共 3404 字,大约阅读时间需要 11 分钟。

embedding_lookup(params, ids, partition_strategy='mod', name=None, validate_indices=True, max_norm=None)
    Looks up `ids` in a list of embedding tensors.
    
    This function is used to perform parallel lookups on the list of
    tensors in `params`.  It is a generalization of
    @{tf.gather}, where `params` is
    interpreted as a partitioning of a large embedding tensor.  `params` may be
    a `PartitionedVariable` as returned by using `tf.get_variable()` with a
    partitioner.
    
    If `len(params) > 1`, each element `id` of `ids` is partitioned between
    the elements of `params` according to the `partition_strategy`.
    In all strategies, if the id space does not evenly divide the number of
    partitions, each of the first `(max_id + 1) % len(params)` partitions will
    be assigned one more id.
    
    If `partition_strategy` is `"mod"`, we assign each id to partition
    `p = id % len(params)`. For instance,
    13 ids are split across 5 partitions as:
    `[[0, 5, 10], [1, 6, 11], [2, 7, 12], [3, 8], [4, 9]]`
    
    If `partition_strategy` is `"div"`, we assign ids to partitions in a
    contiguous manner. In this case, 13 ids are split across 5 partitions as:
    `[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9, 10], [11, 12]]`
    
    The results of the lookup are concatenated into a dense
    tensor. The returned tensor has shape `shape(ids) + shape(params)[1:]`.
    
    Args:
      params: A single tensor representing the complete embedding tensor,
        or a list of P tensors all of same shape except for the first dimension,
        representing sharded embedding tensors.  Alternatively, a
        `PartitionedVariable`, created by partitioning along dimension 0. Each
        element must be appropriately sized for the given `partition_strategy`.
      ids: A `Tensor` with type `int32` or `int64` containing the ids to be looked
        up in `params`.
      partition_strategy: A string specifying the partitioning strategy, relevant
        if `len(params) > 1`. Currently `"div"` and `"mod"` are supported. Default
        is `"mod"`.
      name: A name for the operation (optional).
      validate_indices: DEPRECATED. If this operation is assigned to CPU, values
        in `indices` are always validated to be within range.  If assigned to GPU,
        out-of-bound indices result in safe but unspecified behavior, which may
        include raising an error.
      max_norm: If provided, embedding values are l2-normalized to the value of
        max_norm.
    
    Returns:
      A `Tensor` with the same type as the tensors in `params`.
    
    Raises:
      ValueError: If `params` is empty.
embedding_lookup(params, ids)其实就是按照ids顺序返回params中的第ids行。
比如说,ids=[1,3,2],就是返回params中第1,3,2行。返回结果为由params的1,3,2行组成的tensor.
最近在看,一起学习。
# -*- coding= utf-8 -*-import tensorflow as tfimport numpy as npa = [[0.1, 0.2, 0.3], [1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3], [4.1, 4.2, 4.3]]a = np.asarray(a)idx1 = tf.Variable([0, 2, 3, 1], tf.int32)idx2 = tf.Variable([[0, 2, 3, 1], [4, 0, 2, 2]], tf.int32)out1 = tf.nn.embedding_lookup(a, idx1)out2 = tf.nn.embedding_lookup(a, idx2)init = tf.global_variables_initializer()with tf.Session() as sess:    sess.run(init)    print sess.run(out1)    print out1    print '=================='    print sess.run(out2)    print out2

输出:

[[ 0.1  0.2  0.3] [ 2.1  2.2  2.3] [ 3.1  3.2  3.3] [ 1.1  1.2  1.3]]Tensor("embedding_lookup:0", shape=(4, 3), dtype=float64)==================[[[ 0.1  0.2  0.3]  [ 2.1  2.2  2.3]  [ 3.1  3.2  3.3]  [ 1.1  1.2  1.3]] [[ 4.1  4.2  4.3]  [ 0.1  0.2  0.3]  [ 2.1  2.2  2.3]  [ 2.1  2.2  2.3]]]Tensor("embedding_lookup_1:0", shape=(2, 4, 3), dtype=float64)

转载地址:http://qlpja.baihongyu.com/

你可能感兴趣的文章
ubuntu12.04下hadoop单机模式和伪分布模式环境搭建
查看>>
Spark之RDD持久化、广播、累加器
查看>>
业务系统获取来源IP的正确姿势
查看>>
Nginx配置文件nginx.conf中文详解
查看>>
javascript操作DOM
查看>>
Hadoop环境配置
查看>>
我的友情链接
查看>>
我的友情链接
查看>>
spring的事务管理
查看>>
重构是必须滴
查看>>
iostat查看io使用率
查看>>
AnyChat在打开音频设备的同时会自动发布视频数据吗
查看>>
视频对讲技术 大厅好友解决方案
查看>>
Apache+MariaDB+PHP架构的编译安装
查看>>
Linux磁盘分区UUID的获取及其UUID的作用
查看>>
1. gzip, bzip2 能否直接压缩目录呢?
查看>>
JAVA-WEB
查看>>
shiro实现授权的三种操作
查看>>
Socket编程实例之源代码
查看>>
Linux下编译安装python3
查看>>